Mitral Valve Disease

Uncomplicated Transcatheter Mitral Valve Repair With MitraClip, 2
Commissural Mitral Regurgitation Therapy, 4
Advanced Steering in the Left Atrium for an Aortic Hugger, 6
Transcatheter Repair of Ruptured Papillary Muscle, 8
Optimal Intraprocedural Guidance for Mitral Therapy, 10
Challenges of Transcatheter Therapy for Functional Mitral Regurgitation, 12
The Zip-and-Clip Technique in Transcatheter Mitral Valve Repair, 14
Mitral Annular Calcification and Transcatheter Mitral Valve Repair, 16
Optimization of Multiple Clip Placement, 18
Importance of Hemodynamics for Assessing Residual Regurgitation, 20
Use of Low-Profile Catheter for Continuous Left Atrial Pressure Monitoring During Transcatheter Mitral Valve Repair, 22
Barlow’s Valve Therapy, 24
Acute Left Ventricular Dysfunction and Recovery After Transcatheter Mitral Repair, 26
A Space Too Small for Additional Clipping, 28
Treatment of Leaflet Perforation With Vascular Plugs, 30
Occluder Therapy for Residual Mitral Regurgitation After Transcatheter Repair, 32
Clip-to-Anuloplasty Ring, 34
Transcatheter Repair of Severe MR After Surgical Repair, 36
Unsuccessful Transcatheter Mitral Valve Repair After Prior Cardiac Surgery, 38
MitraClip in a Patient with Radiation Heart Disease, 40
A Difficult Case of Transcatheter Mitral Valve Repair, 42
Stuck on the Atrial Septum, 44
Ensuring Mitral Leaflet Insertion, 46
Transcatheter Management of Failed Mitral Valve Repair: Transcatheter Valve-in-Ring and Paravalvular Leak Closure, 48
Single Leaflet Device Attachment, 50
Lessons Learned From a Difficult MitraClip Case: Progression of Myxomatous Disease Following Percutaneous Mitral Valve Repair, 52
Percutaneous Treatment of Left Ventricular Dysfunction and Secondary Mitral Regurgitation (AccuCinch Ventriculoplasty System), 54
Percutaneous Annuloplasty for Severe Mitral Regurgitation With Cardioband, 56
Left Ventricular Therapy for Functional MR, 60
MitraClip in a Patient with Radiation Heart Disease, 62
Importance of Hemodynamics for Assessing Residual Regurgitation, 64
Use of Low-Profile Catheter for Continuous Left Atrial Pressure Monitoring During Transcatheter Mitral Valve Repair, 66
Subclinical Valve Leaflet Thrombosis, 68
Retrograde Transcatheter Mitral Valve Replacement (Tendyne), 70
Retrograde Transcatheter Mitral Valve Replacement for Mitral Regurgitation (Tara), 72
Complex Transcatheter Repair of Mitral Regurgitation Due to Post-Infarction Papillary Muscle Rupture, 74
Transseptal Transcatheter Mitral Valve-in-Valve, 76
Percutaneous Treatment of Left Ventricular Dysfunction and Secondary Mitral Regurgitation (AccuCinch Ventriculoplasty System), 78
Percutaneous Annuloplasty for Severe Mitral Regurgitation With Cardioband, 80
Management of Transcatheter Mitral Valve Replacement-Induced Left Ventricular Outflow Tract Obstruction, 84
Transcatheter Valve Placement in a Mitral Ring, 86
Hemodynamic Assessment of Mitral Disease, 88
Balloon Mitral Valveoplasty for Rheumatic Mitral Stenosis, 90
Rupture of Mitral Valve With Balloon Mitral Valveoplasty, 92
Balloon Mitral Valveoplasty for Rheumatic Disease Using a Rail, 94
Uncomplicated Transcatheter Mitral Valve Repair With MitraClip

Paul Sorajja, MD

A 91-year-old man with multiple morbidities and prohibitive surgical risk was referred for transcatheter repair with MitraClip (Abbott Vascular, Santa Clara, CA).

On transesophageal echocardiography (TEE), there was degenerative mitral regurgitation (MR) with a small flail segment (arrowhead). Severe MR was present on color flow imaging (arrow). On the TEE bi-commissural view, the flail segment arose slightly medial (arrowhead). Transseptal puncture is performed at a height of 3.9 cm to the mitral coaptation point. For the classic MitraClip system, a transseptal height of ~4.0 cm was sufficient, but a height of ~4.5 cm is typically used for MitraClip NT. The clip delivery system (CDS) is inserted into the steerable guide catheter (SGC) and straddled. Arrowheads indicate straddle markers; arrow indicates SGC tip. The CDS is steered toward the mitral valve using the M knob and posterior torque of the SGC, followed by opening of the clip arms. TEE with 3-dimensional imaging allows the clip arms to be centered over the target of pathology; the arms are positioned perpendicular to the coaptation plane of the mitral valve. The CDS crosses the mitral valve, followed by closure of the arms to 120 degrees to enable cupping of the leaflets. Once the leaflets fall into the arms, the grippers are dropped and the arms are closed to 60 degrees. Leaflet insertion is confirmed in multiple views. The clip then is completely closed, followed by an assessment for MR reduction. This closure is preferably done in the bi-commissural view with simultaneous color imaging to show the location of the clip and effect on MR reduction. The mitral gradient is checked for possible stenosis. TEE imaging shows trivial residual MR after final clip deployment.

Ao, Ascending aorta; L, lateral; LA, left atrium; LV, left ventricle; M, medial; RA, right atrium; RV, right ventricle.

KEY POINTS

- In experienced centers, transcatheter mitral valve repair with MitraClip is an effective and safe procedure for the treatment of severe, symptomatic MR.